Consequences of the selective blockage of chaperone-mediated autophagy.
نویسندگان
چکیده
Chaperone-mediated autophagy (CMA) is a selective pathway for the degradation of cytosolic proteins in lysosomes. CMA declines with age because of a decrease in the levels of lysosome-associated membrane protein (LAMP) type 2A, a lysosomal receptor for this pathway. We have selectively blocked the expression of LAMP-2A in mouse fibroblasts in culture and analyzed the cellular consequences of reduced CMA activity. CMA-defective cells maintain normal rates of long-lived protein degradation by up-regulating macroautophagy, the major form of autophagy. Constitutive up-regulation of macroautophagy is unable, however, to compensate for all CMA functions. Thus, CMA-defective cells are more sensitive to stressors, suggesting that, although protein turnover is maintained, the selectivity of CMA is necessary as part of the cellular response to stress. Our results also denote the existence of cross-talk among different forms of autophagy.
منابع مشابه
Regulated Degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage
Chaperone-mediated autophagy (CMA) is activated in response to cellular stressors to prevent cellular proteotoxicity through selective degradation of altered proteins in lysosomes. Reduced CMA activity contributes to the decrease in proteome quality in disease and ageing. Here, we report that CMA is also upregulated in response to genotoxic insults and that declined CMA functionality leads to r...
متن کاملAutophagy as a cell-repair mechanism: activation of chaperone-mediated autophagy during oxidative stress.
Proper removal of oxidized proteins is an important determinant of success when evaluating the ability of cells to handle oxidative stress. The ubiquitin/proteasome system has been considered the main responsible mechanism for the removal of oxidized proteins, as it can discriminate between normal and altered proteins, and selectively target the latter ones for degradation. A possible role for ...
متن کاملLoss of hepatic chaperone-mediated autophagy accelerates proteostasis failure in aging
Chaperone-mediated autophagy (CMA), a cellular process that contributes to protein quality control through targeting of a subset of cytosolic proteins to lysosomes for degradation, undergoes a functional decline with age. We have used a mouse model with liver-specific defective CMA to identify changes in proteostasis attributable to reduced CMA activity in this organ with age. We have found tha...
متن کاملRegulation of neuronal survival factor MEF2D by chaperone-mediated autophagy.
Chaperone-mediated autophagy controls the degradation of selective cytosolic proteins and may protect neurons against degeneration. In a neuronal cell line, we found that chaperone-mediated autophagy regulated the activity of myocyte enhancer factor 2D (MEF2D), a transcription factor required for neuronal survival. MEF2D was observed to continuously shuttle to the cytoplasm, interact with the c...
متن کاملSelective degradation of annexins by chaperone-mediated autophagy.
Annexins are a family of proteins that bind phospholipids in a calcium-dependent manner. Analysis of the sequences of the different members of the annexin family revealed the presence of a pentapeptide biochemically related to KFERQ in some annexins but not in others. Such sequences have been proposed to be a targeting sequence for chaperone-mediated autophagy, a lysosomal pathway of protein de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 15 شماره
صفحات -
تاریخ انتشار 2006